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Abstract: 
 
 A kinetic model for the rate of appearance of Hydrogen gas from photolyzed Benzene is 
successfully developed from first principle methods and a Lindemann kinetic mechanism. The model is 
curve-fit with empirical data and shown to be in good agreement with observed H2 evolution rates. 
Collision theory is used to estimate the frequency of encounter pair interactions in solution and suggests 
that diffusion of these radicals is the rate limiting step for the reaction. It is suggested that the rate of 
evolution of H2 is independent of initial concentration of Benzene precursor for sufficiently large initial 
concentrations, and this assumption is the basis for the formation of the model presented in this paper.  
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Introduction: 

 The photolysis mechanism of Benzene is regarded to be either a one or two photon absorption 
process whereby excited electronic states decay via radationless internal conversion to S0 [1]. This 
produces a vibrationally active “hot” Benzene and stipulates that all photo-reactants are produced from 
the ground state potential energy surface. A conical intersection between S1 and S0 has been shown to 
exist in the Benzene molecule which allows a non-adiabatic electronic transition to take place due to a 
breakdown of the Born-Oppenheimer approximation [3]. DFT calculations predict that one photon 
absorption stimulates molecular Hydrogen loss with an exit barrier of ≈507 kJ/mol, and that the two 
photon absorption mechanism first produces a methylene-bridge intermediate with a ≈374 kJ/mol barrier 
followed by either molecular or atomic Hydrogen emission again at ≈507 kJ/mol [1]. It was suggested in 
previous work that the internal conversion of electronic excited states to “hot” Benzene stimulates 
vibrational modes corresponding to C-H stretches, and that it is the volatility of these vibrations which are 
responsible for C-H homolysis [4]. Calculations of vibrational temperature from calculated and 
experimental specific heat capacity were shown to be commensurate with observed C-H stretch modes in 
Benzene [5]. 

This work now seeks to describe the rate at which molecular Hydrogen evolution occurs. A first 
order rate constant corresponding to the rate of C-H homolysis is calculated and is in good comparison 
with experimental data. However, this rate constant does not accurately describe the evolution of H2. It is 
fairly clear that the formation of H2 from Hydrogen radicals is contingent upon the diffusion of encounter 
pairs in solution. Thus, this is a good explanation for why the photolytic rate constant does not describe 
observed data. This paper begins by calculating said rate constant and showing the solution to the first 
order rate equation. From this rate, a Lindemann mechanism is constructed and used to produce the final 
model in this paper. 

 

Construction of a Model: 

Eq 1.  The photolysis rate constant is defined as the following, where ζ(λ,T) is the absorption 
cross section as a function of incident wavelength and temperature, φ(λ,T) is the quantum yield, F(λ,T) is 
photon flux, and the upper and lower limits of integration define the domain over which the integrand is 
valid [2]; 
 

 
 
Eq 2.  Using data taken from the following graph, the absorption cross section of Benzene is 
modelled linearly as the following where α & β are constants; 
 

 
 

J = ζ (λ,T )φ(
λ1

λ2

∫ λ,T )F(λ,θ )dλ

ζ (λ,T ) =αλ −β
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Data courtesy of;  
 

Capalbo, Fernando J, et al. “New Benzene Absorption Cross Sections in the VUV, Relevance for Titan's 
Upper Atmosphere.” Icarus, vol. 265, Feb. 2016, pp. 95–109. 

 
Eq 3.  The quantum yield is a heavyside function of λ corresponding to either a one or two 
photon absorption photolysis mechanism [1]; 
 

 
 
Eq 4.  And the photon flux is estimated from the documented power density of the plasma lamp 
used in the experiment (≈15 mW/cm2). Here, let the number of emitted photons per square centimeter, np, 
be related to power density, E, as follows; 
 

 
 

 
 
Eq 5.  Therefore, the photolytic rate constant J is estimated as follows; 
 

 
 

φ(λ,T ) = 1
2
(1+u193(λ))

E =
nphc
λ

→ np =
Eλ
hc

F(λ,θ ) = np =
Eλ
hc

J = Eλ
2hcλ1

λ2

∫ (αλ −β)(1+u193(λ))dλ
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Eq 6.  If J is taken to be the rate constant describing the rate of evolution of Hydrogen 
gas, then the following is deduced; 
 

 
 

 
 

 
 
Eq 7.  It is clear from empirical data that a simple first order rate constant relationship 
(with J) is not sufficient to describe the reaction mechanism. For all graphical representation 
purposes, the function B(t) described in Eq 6 approximates a delta function at t=0. Therefore, 
there must be some other limiting characteristic in the reaction which governs the total rate. A 
Lindemann kinetic model suggests that this limiting characteristic could be the diffusion rate of 
Hydrogen radicals in solution. Under this model, the total reaction and rates are given as follows, 
where B represents the number of Benzene molecules, H dot is the number of Hydrogen radicals, 
and H2 is the number of Hydrogen molecules; 
 

 
 

 
 
Eq 8.  As shown in previous work, the photolysis mechanism for Benzene is non-
adiabatic and occurs from the quick exchange between electronic and thermal energy via a 
conical intersection [4]. The calculated value of J suggests that the homolysis of C-H bonds is 
extremely quick, and the high instability of phenyl and Hydrogen radicals in close proximity is 
sufficient to assume that the reverse reaction rate, J-1, is also very fast- probably plus or minus an 
order of magnitude, though this is not confirmed. The formation of diatomic Hydrogen from the 
encounter pairs (Hydrogen radicals) then is clearly a diffusion limited process, and is likely slow 
in comparison with the formation and deactivation of radicals- that is, the production rate of 
Hydrogen gas is dominated by the diffusion rate k. If a first order rate constant is taken as the 
sum of individual rates, then the following can be shown; 
 

 

J = (1+u193(λ))Eλ
2hc

αλ3

3
−
βλ 2

2
⎛

⎝
⎜

⎞

⎠
⎟
λ1=172nm

λ2=179nm

8.2*109 s−1 < J <1.6*1010 s−1

dH2 (t)
dt

≈ −
dB(t)
dt

= −JB(t)

ln B(t) = −Jt + c :B(0) = B0

B(t) = B0e
−Jt

B+ hν↔
J−1

J
B ⋅+H ⋅

2H ⋅→
k
H2

r = ri
i
∑
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Eq 9.  Interpreting the consequence of this leads to an interesting result- that is, that the 
concentration of Hydrogen radicals (encounter pairs) in solution is approximately constant over 
time. Starting theoretically, convince yourself that at any point in time, the concentration of 
encounter pairs in solution should be small. Energetically, a potential well exists for radical 
deactivation by reforming C-H bonds or by forming Hydrogen gas, so the existence of a high 
concentration of encounter pairs is not favorable. Alternatively, as the concentration of Hydrogen 
radicals increases, so must the concentration of Benzene radicals which in turn increases the 
probability for radical deactivation. Either way, it does not take much reasoning to conclude that 
the number of Hydrogen radicals in solution should not be increasing massively over time- it 
simply is too unstable of a system. Also, a very crucial assumption is made here, and the 
following logic is only valid if this condition is adhered to; that there is a largely excess amount 
of Benzene present at any time t. From Eq 7 it is clear that from the absorption of a photon 
produces Hydrogen radicals at rate J, and that these radicals are deactivated at rate J-1. Therefore; 
 

 
 

Eq 10.  If the initial concentration of Benzene is massive enough such that the 
concentrations before and after irradiation are approximately equal, then the following can be 
said; 
 

 
 
Eq 11.  Which implies that for very large concentrations of Benzene, the change in 
production and deactivation rate of encounter pair radicals from a change in Benzene 
concentration is negligible (keeping in mind that at small Benzene concentrations, this 
approximation no longer works). Referencing Eq 8, both the production and deactivation rates 
were taken to be approximately zero considering the very long diffusion time for encounter pairs 
(that is, the total rate of Hydrogen gas production is dominated by the diffusion rate) which 
accounts for how the J-J-1 term in Eq 10 can remain valid for some initial concentration of 
Benzene B>0. Solving the remaining ODE, it is seen that the number of encounter pair radicals 
at time t is approximately constant. This will result in a very useful simplification in a few steps; 
 

 
 

 

1
k
>>

1
J
, 1
J−1

⎧
⎨
⎩

⎫
⎬
⎭

∴

r ≈ k

−
dB(t)
dt

=
dH ⋅ (t)
dt

= J − J−1( )B

0 ≈ dH ⋅ (t)
dt

≈ J − J−1( )B

H ⋅ (t) ≈ C

C ∈ R
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Eq 12.  However, without any other considerations, this model suggests that the 
concentration of Hydrogen gas over time should be linear. That is; 
 

 
 

 
 
Eq 13.  Clearly, this too is not supported empirically, but at small time intervals 
(0<t<≈700 sec), a linear model actually does nicely represent the data. The issue is that the linear 
model begins to fall apart as t→∞ because H2(t)=kCt+c is not bounded. A linear model with an 
attenuation factor which forces the solution to have a steady state would be much more realistic. 
In practice, many if not all chemical systems have an equilibrium constant keq which can be 
defined in a number of ways- however, the important take-away is the second line; 
 

 
 

 
 
Eq 14.  The consequence of these assumptions is that a steady state is reached at some 
critical concentration of Hydrogen gas. This fact can be used to help introduce the attenuation 
character into the linear model described above. Rationally, it can be assumed that the rate of 
Hydrogen gas production should be proportional to the concentration of H2 in the chamber. That 
is, the rate will be high for low concentrations and it approaches zero as the concentration 
converges to the steady state S. Recall that a rate for a simple unidirectional reaction can be 
given as K. Keep in mind that this rate constant does not take into account diffusion, and is only 
used for the following illustration. Formally; 
 

 
 

 
 

 
 

 
 

 

dH2 (t)
dt

= kH ⋅ (t) = kC

H2 (t) = kCt + c

keq ∝
yi
xi
∝
qi
pi
∝
[H2 ]
V

keq ∈ R

2H ⋅→H2

K =
H ⋅[ ]2

H2[ ]

∴

lim
[H2 ]→0

K = lim
[H2 ]→0

H ⋅[ ]2

H2[ ]
=∞

lim
[H2 ]→∞

K = lim
[H2 ]→∞

H ⋅[ ]2

H2[ ]
= 0
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Eq 15.  Even though K is not accurate for this system, the illustration of what happens as 
the concentration of Hydrogen gas increases should also be true for a diffusion limited model. 
Therefore, the general form of an ODE which models the concentration of Hydrogen gas over 
time and has a steady state at ε=α/H2(t) can be given as; 
 

 
 
Eq 16.  All that remains then is to determine the values of α & ε. It was assumed in Eq 11 
that α corresponds to some diffusivity coefficient of Hydrogen radicals in solution. Collision 
theory gives a simple way to relate Z, the collision frequency- this can then be related to some 
rate k. For reactants A & B, the following can be said; 
 

 
 

Eq 17.  Where ni is the number density of reactant i, σAB is the reaction cross section, kb is 
Boltzmann’s constant, T is temperature, and µAB is the reduced mass of the reactants. Z is 
therefore given in units of collisions m-3 sec-1. To convert this frequency to a rate, two pieces of 
information are needed. Firstly, the volume of the chamber V, and the quantum yield of a 
collision of encounter pairs, φ. Then; 
 

 
 
Eq 18.  Knowing that in this reaction reactants A and B both correspond to Hydrogen 
radicals, and expressing number density as the quotient of number of molecules, N, and volume, 
one obtains; 
 

 
 
Eq 19.  And the constants are given as follows, where rH and mH are the Bohr radius and 
mass of a Hydrogen atom respectively. 

 
 

 
 

 

dH2 (t)
dt

=α −εH2 (t) :{α,ε}∈ R

Z = nAnBσ AB
8kbT
πµAB

k = ZVφ = nAnBσ ABφV
8kbT
πµAB

k = N 2

V 2

⎛

⎝
⎜

⎞

⎠
⎟σ HφV

8kbT
πµH

=
N 2σ Hφ
V

8kbT
πµH

σ H = π (2rH )
2

µH =
m2

H

2mH

φ =1
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Eq 20.  Letting k=α from Eq 15, the following rate law is deduced; 
 

 
 

Eq 21.  From Eq 11 it was assumed that the number of Hydrogen radicals at any time was 
equal to a constant. In Eq 16, the number density of these encounter pairs was called and 
eventually expressed as the quantity N2. Formally, it is given as; 
 

 
 
Eq 22.  The value γ is introduced for simplicity, and also so it is clear that N2 is a 
parameter value. While the forward reaction rate J was calculated in Eq 1, the inverse rate J-1 is 
not known. We assumed that B remains approximately constant throughout the course of the 
reaction because it exists in large quantities. Therefore, J-1 will be found from curve fitting with 
empirical data such that; 
 

 
 

 
 
Eq 23.  Therefore, it can be seen that a steady state for the system exists when; 
 

 
 

 

 
 
Eq 24.  Where H2

* corresponds to an equilibrium concentration of Hydrogen gas. 
Empirically, this value has been determined to be ≈ 250 ppm. Plugging in and simplifying; 
 

 
 
Eq 25.  Then separating variables and integrating; 
 

dH2 (t)
dt

=
N 2σ Hφ
V

8kbT
πµH

−εH2 (t)

N 2 = J − J−1( )2 B2 = γ

dH2 (t)
dt

=
γσ Hφ
V

8kbT
πµH

−εH2 (t)

γ ∈ R

dH2 (t)
dt

= 0

εH2
* =

γσ Hφ
V

8kbT
πµH

ε =
γσ Hφ
H2

*V
8kbT
πµH

dH2 (t)
dt

=
γσ Hφ
V

8kbT
πµ

1− H2 (t)
H2

*

⎛

⎝
⎜

⎞

⎠
⎟
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Eq 26.  And solving for c with the given initial condition; 
 

 
 

 
 

 
 
Eq 27.  Therefore; 
 

 
 
 
 
 
 To assist in developing this model, empirical data was collected and was compared with 
the predictions of the model. Figure 1 shows a series of curves measuring the concentration of H2 
over time at what is referred to as STD volume (≈0.00068 m3). The model from equation 27 is 
overlaid on this data with a γ value of 1013. Figure 2 shows a series of curves also measuring the 
concentration of H2 over time, but at two different volumes to validate the assumption that 
evolution rate is inversely proportional to volume. The STD volume is the same value as in 
figure 1, and the BIG volume is (≈(0.00068 + 0.00123) m3). The γ values for both curves in this 
model is 2*1013. 
 
 
 
 
 

dH2 (t)

1− H2 (t)
H2

*

⎛

⎝
⎜

⎞

⎠
⎟

∫ =
γσ Hφ
V∫ 8kbT

πµ
dt

−H2
* ln 1− H2 (t)

H2
* =

γσ Hφ
V

8kbT
πµ

t + c

H2 (t) = H2
* 1− exp −γσ Hφ

H2
*V

8kbT
πµ

t − c
H2

*

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

H2 (0) = 25

25= H2
* 1− exp − c

H2
*

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

c = −H2
* ln 1− 25

H2
*

H2 (t) = H2
* 1− exp −γσ Hφ

H2
*V

8kbT
πµ

t + ln 1− 25
H2

*

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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